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Mode expansion description of stadium-cavity laser dynamics
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The lasing dynamics of a stadium-cavity laser is studied by using a mode expansion model which is a
reduction of the Schrédinger-Bloch model. We study the properties of stationary lasing states when two cavity
modes are selectively excited, while examining the validity of the mode expansion model by comparing its
results with those of the Schrédinger-Bloch model. Some analytical results are obtained for single-mode and
two-mode stationary lasing states for the mode expansion model.
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I. INTRODUCTION clear to what extent the phenomenological treatment works
In studying lasing in two-dimensiondPD) lasers, it is when the light emission becomes two dimensional. Thus, in

essential to elucidate the properties of cavity modes, espé’der to confirm the validity of the modal description, we
cially the ones with low los§1-3]. Moreover, in order to compare the results of the MSB model with those of the SB

properly describe stationary lasing states supported by extefaodel. It is demonstrated that, concerning single-mode and
nal pumping, it is necessary to take into account the nonlintwo-mode lasing, the MSB model reproduces characteristic
ear interaction among the cavity modes. So far, nonlineafeatures of the SB model. Moreover, the introduction of the

dynamical treatment of 2D lasers has been carried out wittMSB model allows us to obtain analytical results on single-

the Schrodinger-BlockSB) model[4,5]. The SB model, de- mode and two-mode stationary lasing states.

rived from the Maxwell equations and the optical-Bloch  This paper is organized as follows. In Sec. Il, we review

equations, describes nonlinear interaction between the liglihe results of the SB model, mainly focusing on single-mode
field and a two-level gain medium. Some of the present auand two-mode lasing. In Sec. I, we derive the MSB model

thors have performed numerical simulations on the SHrom the SB model, and study its dynamics theoretically and
model with a stadium cavity, and demonstrated that stationaumerically. Section IV is a summary.

ary lasing states can be well explained by the properties of

the cavity modes. For example, the lasing pattern of a single- II. SCHRODINGER-BLOCH MODEL
mode stationary state was shown to be quite similar to that of ) . ) ) ) )
a cavity-mode eigenfunctiof#], and some intriguing multi- In this section, we review the dynamical simulation of the

mode interactions were revealed, one of which being theB model. First, let us introduce the SB model. When the
frequency locking of two different-parity modgs]. We note cavity is wide in thexy directions and thin in the direction
that recently semiconductor laser diodes with a stadium cavcompared to the light wavelength, the SB model is given as
ity were actually fabricated, and stable lasing has been exollows [4,5]:

perimentally confirmed6]. Moreover, asymmetric far-field

patterns experimentally observed in quasistadium-cavity la- JE - '_<V2 + n_2>~E_ aE + up (1)
sers have been successfully explained by the frequency- gt 2\ Y n2 ’
locking phenomenoi5,6].
According to the results of the SB model simulation, the Jp L~
dynamics seem to be well described in terms of the mode i = (yL +iAg)p +'kWE, 2

concept. Thus one may expect that the dynamics of the origi-

nal partial differential equation model can be essentially de-

scrib_ed by an prdinary differential e_quation model which i; ﬂV: — (W= W,) - 2‘7<(~E;3* +E* 7), (3)

obtained, for instance, by expanding the electromagnetic at

field by mode basis functions. Such a reduction of the model ~ ~ .

is desirable for a more comprehensive analysis based updMhere E(x,y,t) and’p(x,y,t) are the slowly varying enve-

the nonlinear dynamics theory_ Iopes of the TM electric field and of the polarization f|6|d,
In this paper, focusing on a stadium cavity case, we contespectively, andM(x,y,t) is the population inversion com-

sider a reduction of the SB model to a mode expansiofPonent. The cavity shape determines the spatial distributions

model, which we shall call the mode-expanded Schrédingerof both the refractive index and the cavity absorption co-

Bloch (MSB) model. We employ closed-cavity modes as theéfficient «; n(x,y) is nj(cons} inside the cavity and

mode basis, phenomenologically incorporating the effect ofi,,{(consi outside the cavity, whilex(x,y) is « (cons} in-

energy leakage at the cavity boundary. Such treatment iside the cavity and zero outside the cavity. Space and time

common in the studies of 1D lasdig]. However, itis not so are made dimensionless by the scale transformations
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FIG. 1. A distribution of the complex eigenvalues. The dashed
curves are the lower boundaries of the positive gain region for
W,,=0.0045, 0.0048, 0.0051, 0.00%#om top to botton.

(N wex/c,niywgy/c) — (X,y) and tws—t, respectively, with
ws being the oscillation frequency of the light field slightly
different from the transition frequency, of the two-level
medium. The difference of the two frequencies can be mea?
sured by a parameteyy=(wy— ws)/ ws, Which plays the role
of the gain center. The other parameters are as follgws:
and?, are, respectively, the transversal and longitudinal re
laxation ratesu and’x represent the coupling strength be-
tween the light field and the medium, awd, is the external
pumping strength.

For the numerical simulation of the SB model, we employ
specific settings: we fix the cavity shape to be a stadiun?
consisting of two half circles of the radiu8=49/4y2 and
two flat lines of the lengthR; moreover, we set the values of .
most of the system’s parameters as followg;=2, gy
=1, A;=-0.075,a,=4Xx 1072, y, =4Xx 1072, y=2X 1072,
®=0.5, andu=m/4.

As was demonstrated in Refs4,5,8), a key to under-
standing the SB model's dynamics is the identification of the
cavity modes. The cavity modeg(x,y) (k=1, 2,...) are the
solutions of the Helmholtz equation

pwky W,

P +[Re(&) — Ao

Such regions are indicated in Fig. 1 for sevangl values.

For variousW,, values, we numerically integrate Egs.
(1)—~(3) for long times(typically t=~ 10°) to obtain stationary
states. Figure 2 shows the pumping strength dependence of
the total light intensity inside the cavity for the stationary
state. The lasing threshold is evaluated toVide~ 0.0045,

that the positive gain region of thé plane is defined as
follows [4]:

>=1Im(&) + ay. (5

and a slight change of the slope\&t,=0.0078 is due to a
frequency-locking phenomenon explained below. Just above
the lasing threshold, we obtain a single-mode lasing station-
ary state where only the modze lases. This can be con-
firmed by the power spectrum of the time series of the elec-
tric field at a certain point in the cavity as shown in Figg)3

For 0.0050sW.,,<0.0078, we have a two-mode lasing
tate where most of the energy is retained by the two modes
eeandoo, and these modes oscillate with different frequen-
cies. A typical power spectrum for the two-mode lasing state
is shown in Fig. 8). The frequency difference becomes
smaller when we increase th&,, value, and eventually at
W,,=~0.0078, the two frequencies merge, or frequency lock-
ing occurs. As a consequence of this frequency locking of the
two different-parity modes, the lasing pattern becomes asym-
metric[5]. We plot theW,, dependence of the frequencies in

0.4
1f_, n? |
S5\ Vot 2 U(X,y) = &(x,y), (4) 0.35
in >
o 03}
where the eigenvalug becomes complex because the cavitys
is an open system. The complex eigenval(resonancest,  § %2°|
and eigenfunctiong,(x,y) can be calculated by the extended £ ¢}
boundary element methdd,9]. -
Figure 1 shows a distribution of the complex eigenvaluess 915 [
around RéA)=A,. The eigenvalues are also listed in Table 1.5 01t
. . . . — :
Because the stadium cavity has reflection symmetry with re
spect to both thex andy axes, an eigenfunction, satisfies 0.05 1
u(=x,y)=au(x,y) and ug(x,-y)=bu(x,y) with a,b==1. 0 : . . .
Thus the eigenmodes are classified into four parity classe 0.004 0005 0006  0.007 0.009  0.01

labeled byeven-even(a=b=+1), even-odd(a=1,b=-1),
odd-evena=-1,b=+1), andodd-odd(a=b=-1).

Pumping strength We

We chose the value af, so that the two adjacent modes  FIG. 2. Light intensity inside the cavity vs the pumping strength
labeled byeeandoo can preferentially attain the gain. Note W, for the SB model.
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complete basig10]. Therefore we instead use the closed-
cavity modes for the expansion of the variables, phenomeno-
logically taking into account the effects of energy leakage at
Fig. 4. An intriguing feature of the frequency-locking phe- the cavity boundary. The closed-cavity modes are nothing
nomenon is that most of all the energy is occupied by théut eigenmodes of Eq4) with the infinite-wall boundary
frequency-locked state labeled leg+00, even when many condition. In the wavelength regime of our interest, we were
other modes are in the positive gain region. This can beble to make a correspondence between the open-cavity
confirmed by the power spectrum shown in Figc)3We  modes and the closed-cavity modes by comparing the nodal
numerically checked that the dominancy of the frequencyJatterns of eigenfunctions. An example of the correspon-
locked state continues beyoifd,=0.02. dence is presented in Fig. 5.

Let us denote the normalized closed-cavity modes by
vi(x,y). ExpandingE andp as E=ZE(Hvi(x,y) and p
=2 oHv(X,y), respectively, we obtain the MSB model as

Now, we construct a mode expansion version of the SEollows:
model. The open-cavity modes are characterized by complex

FIG. 3. Power spectra cﬁ(t) for stationary lasing states of the
SB model;(a) W.,=0.0048,(b) W,,.=0.0060, andc) W.,=0.0080.

IIl. MODE EXPANSION DESCRIPTION

A. Mode-expanded Schrédinger-Bloch model

. . d
eigenvalues, and are, in general, not guaranteed to form a d—ik == (o + oy +iA)E + upy, (6)
0.071
dp _ -~ . ~ ~
-0.072 | 1 — == (Y, +iApt KW B+ K2 Wy E, (7
XX X x 00 dt |
XX x
> -0.073 | XXy
& Xx dwyg
o x — = =YW — 2k JimnEmpn+ Empr), (8
2, -0.074 | % cet00 dt Yk K%% kimn(EmPn + Empn) (8)
[]
06306 2 KK K K .
E 0.075 | + T with
) +
ee ++++
0076 | FtH+4pptttt Wk|(t):fJ dxdy[W(x,y,t) = W, Jvioi(X,Y), (9
D
-0.077 . . . . .
0.004 0005 0.006 0007 0008 0009 0.01
J =JJ dxdyv, v n(X,Y), 10
Pumping strength Wow Kimn D YoRwmon(x.Y) (10

FIG. 4. The dependence of mode frequencies on the pumpingthereD is the area inside the cavity. In order to incorporate
the effect of the energy leakage, we introduced mode-

strengthW,, for the SB model.
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dependent decay rateg in Eqg. (6). Since the imaginary part TABLE Il. Comparison of the SB and MSB models with regard
of an eigenvalue characterizes the decay rate of the mode, i@ single-mode lasing.
put o =|Im(&y)|. Moreover, we substitute the mode’s eigen-
frequencyA, with the real part of the complex eigenvalue, Lasing threshold di/dW..
l.e., A,=Re(&). o _ L SB model 0.00455 45.8
Although the mode expansion is formulated with an infi-
nite number of modes, we shall take into account only the MSB model 0.00444 38.2
modes located near the gain center. Note that if the modes
outside the positive gain region are never to be excited, i.ethreshold, the difference of the slopé/dW,, is noticeable.
E.(t)=0, the above system is closed within the modes inside'his might be caused by overestimating the value of the
the positive gain region. coupling coefficientlsssbecause of the following reason. In
In the MSB model, the effect of the cavity shape appearsalculating the value odssssfrom Eq. (10), we supposed a
through the mode-coupling coefficienlg,,, and the param- stadium withR=49/4y2. However, as can be seen from Fig.
etersgy and A,. Compared to 1D-cavity cases, a prominent5, an eigenfunction of the open cavity is extended compared
difference of 2D-cavity cases is the absence of “strong’to that of the closed cavity. Sindg,,, scales a2, the use
mode-interaction rules, although we might still have “weak” of a smallerR value yields a larged,, value. Although the
rules when the cavity has some symmetry. For instance, iextension of the eigenfunction is nonuniform, the average
the case of a stadium cavity, its symmetry leads to somextension rate is roughly estimated as 1.1. This corrects the
constraints on the mode interaction. That is, the modevalue ofdl/dW., for the MSB model to be 46.2.
coupling coefficient),,,, is nonzero if and only if either of Next, we consider the cases where g value is large
the following is satisfied(i) the parities of the four modes enough for multimode lasing. In Fig. 6, th€, dependences
k, I, m, n are all differentjii) the parities of the four modes of the total light intensit;EkEﬁ and its mode componenﬁ
k, I, m, n are all the same; diii ) the four mode, |, m, n are plotted. We can see that the modesand oo constitute
consist of two same-parity pairs. The values of nonZgyg, the main components foV,,<0.01. For these two modes,
are determined by numerically calculating E#0). we plot theW,, dependence of the frequencies in Fig. 7,
where we can see that the frequency-locking phenomenon is
reproduced. The frequency-locking threshold is estimated to
Here, we study the dynamics of the MSB model with thebe W,,~0.0064, which is 18% smaller than the threshold for
same parameters as used for the SB model simulation in Sellle SB model. Although there is such a quantitative differ-
I, and examine the validity of the mode expansion approachence, it is remarkable that, in the frequency-locking regime,
comparing the results of the MSB model with those of thealmost all the energy is shared by the modeandoo, while
SB model. The reduction of the PDE model to the ODEthe other modes are located deep inside the positive gain
model enables us to obtain some analytical results for staregion. This is consistent with the SB model’'s results, pro-
tionary lasing states. In the numerical simulation of the MSBviding evidence that the mode-interaction effect of the SB
model presented below, we include five modes near the gaimodel is properly inherited by the MSB model. However, for
center, labeled bge, 0o, eo, e€¢, andog, to construct the much largeW., values(W..=0.01), modes other thaeeand
MSB model. oo start to lase, which is qualitatively different from the SB
First, we study single-mode lasing. For the MSB model,model’s results. Since the mode is basically defined for a
one can derive the single-mode stationary solution analytiinear system, the breakup of the mode-based description ap-
cally. Assuming that only theth mode has positive gain, and pears to be unavoidable for too large nonlinearity.

that the stationary solution has the forB=Eg£?, ps 05

B. Single-mode and two-mode lasing

=p€?, andwe=CconstEs, ¢,Wese R, p e C), we obtain
_m_ M 0 Do
I=Ei=———(W.,. - \N(x)), (11 hor Total intensity
AxJsssétiot g
® o03f
~ is)
E¢ - _ oo+ 7y Ag (12) 5
dt otV B o2} ee 1
. : . Y -~
wherea;;= oy + s IS the total loss rate ar?d/f) isthelasing <+ | S . |
threshold given by o1} co
oy 2
WO = atot'yj_{l +( Ag—Ag ) } (13) -
o) ~ ~ . 0 _ypeere™ 3 ok
K %ot V1 0004 0005 0006 0007 0008 0009 001 0011 0012
Note that the linear dependence of the light intensity on the Pumping strength

pumping strength is reproduced by the MSB model.
A quantitative comparison of the two models is given in  FIG. 6. Light intensities and EX(k=1,...,5) vs the pumping
Table Il. Compared to the good agreement of the lasingtrengthW.,, for the MSB model.
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Finally, we focus on the frequency-locking phenomenon 001 | : z‘“ 0.0342 ]
of the MSB model. In the frequency-locking regime, the dy-___ tot =0.0242 ,,f::/ﬂ”
namics can be approximately described by the two medes =8 °%®[| ® %« =0.0142 "‘:,///,.M”'”"'w-

and oo. Labeling the modege and oo by k=1 andk=2,
respectively, we assume the frequency-locked station
ary solutions as followsE,=E&%, p=pc&?, wy=const
(Ex, D, Wi € R, pe C:k,1=1, 2), where d¢,/dt=de,/dt=

—v. Substituting these into Eq&)—(8), one obtains a set of
equations that determines tidé, range where the frequency-

locked solution exists. Since the equations are too compli 001 002 003 0.04 005 0.06
cated to be analytically solved for a general case, we con ~
sider here an idealized case to which we can derive th. TL

locking threshold exactly. Namely, we consider a case where
the two complex eigenvalues are symmetrically placed with
respect to the gain center line, i.ey=a,=a and d;=d,

=d with dy=|A—Ay. Besides, we assumd q;=Jyp=J.
After this approximation, we can derive the locking thresh-
old as follows:

FIG. 8. The parameter dependence of the frequency-locking
hreshold\l\/b for the MSB model. The dotted curves are theoretical
ones given by Eq(14).

estimation is useful for knowing the qualitative nature of the
frequency-locking phenomenon.

W = “‘0‘”{“ — €089 5 coso+ V= 1)} (14)

KL IV. SUMMARY
where ag;=ay +a, d=arctafioy,/d) and 8=J/J;15+2. In By constructing a mode expansion version of the SB
the case ofx,> d, this reduces to model, we studied the properties of stationary lasing states
B when two modes are selectively excited. The validity of the
WO ~ QiotY L <1 + i\m) (15) mode expansion description was examined by comparing the
* K ot ) results of the MSB model with those of the SB model. It was

_ 2 demonstrated that qualitative features of the SB model simu-
In Fig. 8, we plot the dependence &£ on the parameters |ation could be reproduced by the MSB model, provided that
arandy, , while the other parameters are fixed at the valueshe nonlinearity is not too strong to invalidate the description
given in Sec. Il, and we puk=(a;+a,)/2. In Fig. 8, theo- pased on the linear modes. The introduction of the MSB
retical curves given by Eq14) are also plotted. For these model enabled us to analytically study the stationary states to
theoretical curves, we supposet(d;+d,)/2~0.00355 some extent. In particular, we were able to obtain an analyti-
and 8= 2(J1111+J2222)/J1122+2 4.96, where the mode cou- cal expression for the frequency-locking threshold.
pling coefficients are calculated from E@L0) as Jji11
=0.004 72 J,,,,=0.004 84, and;1,,©=0.001 61. It turns out ACKNOWLEDGMENT
that, in spite of the crude approximation, the theoretical es-
timate well explains the numerical data. Since the determi- The work at ATR was supported in part by the National
nation of the threshold for the SB model requires an enorinstitute of Information and Communications Technology of
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