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The lasing dynamics of a stadium-cavity laser is studied by using a mode expansion model which is a
reduction of the Schrödinger-Bloch model. We study the properties of stationary lasing states when two cavity
modes are selectively excited, while examining the validity of the mode expansion model by comparing its
results with those of the Schrödinger-Bloch model. Some analytical results are obtained for single-mode and
two-mode stationary lasing states for the mode expansion model.
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I. INTRODUCTION

In studying lasing in two-dimensionals2Dd lasers, it is
essential to elucidate the properties of cavity modes, espe-
cially the ones with low lossf1–3g. Moreover, in order to
properly describe stationary lasing states supported by exter-
nal pumping, it is necessary to take into account the nonlin-
ear interaction among the cavity modes. So far, nonlinear
dynamical treatment of 2D lasers has been carried out with
the Schrödinger-BlochsSBd modelf4,5g. The SB model, de-
rived from the Maxwell equations and the optical-Bloch
equations, describes nonlinear interaction between the light
field and a two-level gain medium. Some of the present au-
thors have performed numerical simulations on the SB
model with a stadium cavity, and demonstrated that station-
ary lasing states can be well explained by the properties of
the cavity modes. For example, the lasing pattern of a single-
mode stationary state was shown to be quite similar to that of
a cavity-mode eigenfunctionf4g, and some intriguing multi-
mode interactions were revealed, one of which being the
frequency locking of two different-parity modesf5g. We note
that recently semiconductor laser diodes with a stadium cav-
ity were actually fabricated, and stable lasing has been ex-
perimentally confirmedf6g. Moreover, asymmetric far-field
patterns experimentally observed in quasistadium-cavity la-
sers have been successfully explained by the frequency-
locking phenomenonf5,6g.

According to the results of the SB model simulation, the
dynamics seem to be well described in terms of the mode
concept. Thus one may expect that the dynamics of the origi-
nal partial differential equation model can be essentially de-
scribed by an ordinary differential equation model which is
obtained, for instance, by expanding the electromagnetic
field by mode basis functions. Such a reduction of the model
is desirable for a more comprehensive analysis based upon
the nonlinear dynamics theory.

In this paper, focusing on a stadium cavity case, we con-
sider a reduction of the SB model to a mode expansion
model, which we shall call the mode-expanded Schrödinger-
Bloch sMSBd model. We employ closed-cavity modes as the
mode basis, phenomenologically incorporating the effect of
energy leakage at the cavity boundary. Such treatment is
common in the studies of 1D lasersf7g. However, it is not so

clear to what extent the phenomenological treatment works
when the light emission becomes two dimensional. Thus, in
order to confirm the validity of the modal description, we
compare the results of the MSB model with those of the SB
model. It is demonstrated that, concerning single-mode and
two-mode lasing, the MSB model reproduces characteristic
features of the SB model. Moreover, the introduction of the
MSB model allows us to obtain analytical results on single-
mode and two-mode stationary lasing states.

This paper is organized as follows. In Sec. II, we review
the results of the SB model, mainly focusing on single-mode
and two-mode lasing. In Sec. III, we derive the MSB model
from the SB model, and study its dynamics theoretically and
numerically. Section IV is a summary.

II. SCHRÖDINGER-BLOCH MODEL

In this section, we review the dynamical simulation of the
SB model. First, let us introduce the SB model. When the
cavity is wide in thexy directions and thin in thez direction
compared to the light wavelength, the SB model is given as
follows f4,5g:
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where Ẽsx,y,td and r̃sx,y,td are the slowly varying enve-
lopes of the TM electric field and of the polarization field,
respectively, andWsx,y,td is the population inversion com-
ponent. The cavity shape determines the spatial distributions
of both the refractive indexn and the cavity absorption co-
efficient a ; nsx,yd is ninsconstd inside the cavity and
noutsconstd outside the cavity, whileasx,yd is aLsconstd in-
side the cavity and zero outside the cavity. Space and time
are made dimensionless by the scale transformations
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sninvsx/c,ninvsy/cd→ sx,yd and tvs→ t, respectively, with
vs being the oscillation frequency of the light field slightly
different from the transition frequencyv0 of the two-level
medium. The difference of the two frequencies can be mea-
sured by a parameterD0=sv0−vsd /vs, which plays the role
of the gain center. The other parameters are as follows:g̃'

and g̃i are, respectively, the transversal and longitudinal re-
laxation rates,m and k̃ represent the coupling strength be-
tween the light field and the medium, andW` is the external
pumping strength.

For the numerical simulation of the SB model, we employ
specific settings: we fix the cavity shape to be a stadium
consisting of two half circles of the radiusR=49/4Î2 and
two flat lines of the length 2R; moreover, we set the values of
most of the system’s parameters as follows:nin=2, nout
=1, D0=−0.075,aL=4310−2, g'=4310−2, gi=2310−2,
k̃=0.5, andm=p /4.

As was demonstrated in Refs.f4,5,8g, a key to under-
standing the SB model’s dynamics is the identification of the
cavity modes. The cavity modesuksx,yd sk=1, 2,…d are the
solutions of the Helmholtz equation

−
1

2
S¹xy

2 +
n2

nin
2 Duksx,yd = jkuksx,yd, s4d

where the eigenvaluejk becomes complex because the cavity
is an open system. The complex eigenvaluessresonancesd jk
and eigenfunctionsuksx,yd can be calculated by the extended
boundary element methodf4,9g.

Figure 1 shows a distribution of the complex eigenvalues
around ResDd=D0. The eigenvalues are also listed in Table I.
Because the stadium cavity has reflection symmetry with re-
spect to both thex and y axes, an eigenfunctionuk satisfies
uks−x,yd=auksx,yd and uksx,−yd=buksx,yd with a,b= ±1.
Thus the eigenmodes are classified into four parity classes
labeled byeven-evensa=b= +1d, even-oddsa=1,b=−1d,
odd-evensa=−1,b= +1d, andodd-oddsa=b=−1d.

We chose the value ofD0 so that the two adjacent modes
labeled byeeandoo can preferentially attain the gain. Note

that the positive gain region of thej plane is defined as
follows f4g:

mk̃g̃'W`

g̃'
2 + fResjkd − D0g2 . − Imsjkd + aL. s5d

Such regions are indicated in Fig. 1 for severalW` values.
For various W` values, we numerically integrate Eqs.

s1d–s3d for long timesstypically t<105d to obtain stationary
states. Figure 2 shows the pumping strength dependence of
the total light intensity inside the cavity for the stationary
state. The lasing threshold is evaluated to beW`<0.0045,
and a slight change of the slope atW`<0.0078 is due to a
frequency-locking phenomenon explained below. Just above
the lasing threshold, we obtain a single-mode lasing station-
ary state where only the modeee lases. This can be con-
firmed by the power spectrum of the time series of the elec-
tric field at a certain point in the cavity as shown in Fig. 3sad.

For 0.0050&W`&0.0078, we have a two-mode lasing
state where most of the energy is retained by the two modes
eeandoo, and these modes oscillate with different frequen-
cies. A typical power spectrum for the two-mode lasing state
is shown in Fig. 3sbd. The frequency difference becomes
smaller when we increase theW` value, and eventually at
W`<0.0078, the two frequencies merge, or frequency lock-
ing occurs. As a consequence of this frequency locking of the
two different-parity modes, the lasing pattern becomes asym-
metric f5g. We plot theW` dependence of the frequencies in

FIG. 1. A distribution of the complex eigenvalues. The dashed
curves are the lower boundaries of the positive gain region for
W`=0.0045, 0.0048, 0.0051, 0.0054sfrom top to bottomd.

TABLE I. The complex eigenvalues of the open-cavity
system.

mode Resjkd Imsjkd

ee −0.0780 −0.0035

oo −0.0709 −0.0049

eo −0.0650 −0.0060

ee8 −0.0591 −0.0090

oe −0.0934 −0.0087

FIG. 2. Light intensity inside the cavity vs the pumping strength
W` for the SB model.
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Fig. 4. An intriguing feature of the frequency-locking phe-
nomenon is that most of all the energy is occupied by the
frequency-locked state labeled byee+oo, even when many
other modes are in the positive gain region. This can be
confirmed by the power spectrum shown in Fig. 3scd. We
numerically checked that the dominancy of the frequency-
locked state continues beyondW`=0.02.

III. MODE EXPANSION DESCRIPTION

A. Mode-expanded Schrödinger-Bloch model

Now, we construct a mode expansion version of the SB
model. The open-cavity modes are characterized by complex
eigenvalues, and are, in general, not guaranteed to form a

complete basisf10g. Therefore we instead use the closed-
cavity modes for the expansion of the variables, phenomeno-
logically taking into account the effects of energy leakage at
the cavity boundary. The closed-cavity modes are nothing
but eigenmodes of Eq.s4d with the infinite-wall boundary
condition. In the wavelength regime of our interest, we were
able to make a correspondence between the open-cavity
modes and the closed-cavity modes by comparing the nodal
patterns of eigenfunctions. An example of the correspon-
dence is presented in Fig. 5.

Let us denote the normalized closed-cavity modes by

vksx,yd. Expanding Ẽ and r̃ as Ẽ=okEkstdvksx,yd and r̃
=okrkstdvksx,yd, respectively, we obtain the MSB model as
follows:

dEk

dt
= − saL + ak + iDkdEk + mrk, s6d

drk

dt
= − sg̃' + iD0drk + k̃W`Ek + k̃o

l

wklEl , s7d

dwkl

dt
= − g̃iwkl − 2k̃o

m
o
n

JklmnsEmrn
* + Em

* rnd, s8d

with

wklstd =EE
D

dxdyfWsx,y,td − W`gvkvlsx,yd, s9d

Jklmn=EE
D

dxdyvkvlvmvnsx,yd, s10d

whereD is the area inside the cavity. In order to incorporate
the effect of the energy leakage, we introduced mode-

FIG. 3. Power spectra ofẼstd for stationary lasing states of the
SB model;sad W`=0.0048,sbd W`=0.0060, andscd W`=0.0080.

FIG. 4. The dependence of mode frequencies on the pumping
strengthW` for the SB model.

FIG. 5. sad The eigenfunction of the open-cavity modeee. sbd
The eigenfunction of the closed-cavity mode corresponding to the
open-cavity modeee.
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dependent decay ratesak in Eq. s6d. Since the imaginary part
of an eigenvalue characterizes the decay rate of the mode, we
put ak= uImsjkdu. Moreover, we substitute the mode’s eigen-
frequencyDk with the real part of the complex eigenvalue,
i.e., Dk=Resjkd.

Although the mode expansion is formulated with an infi-
nite number of modes, we shall take into account only the
modes located near the gain center. Note that if the modes
outside the positive gain region are never to be excited, i.e.,
Ekstd;0, the above system is closed within the modes inside
the positive gain region.

In the MSB model, the effect of the cavity shape appears
through the mode-coupling coefficientsJklmn and the param-
etersak andDk. Compared to 1D-cavity cases, a prominent
difference of 2D-cavity cases is the absence of “strong”
mode-interaction rules, although we might still have “weak”
rules when the cavity has some symmetry. For instance, in
the case of a stadium cavity, its symmetry leads to some
constraints on the mode interaction. That is, the mode-
coupling coefficientJklmn is nonzero if and only if either of
the following is satisfied:sid the parities of the four modes
k, l , m, n are all different;sii d the parities of the four modes
k, l , m, n are all the same; orsiii d the four modesk, l , m, n
consist of two same-parity pairs. The values of nonzeroJklmn
are determined by numerically calculating Eq.s10d.

B. Single-mode and two-mode lasing

Here, we study the dynamics of the MSB model with the
same parameters as used for the SB model simulation in Sec.
II, and examine the validity of the mode expansion approach,
comparing the results of the MSB model with those of the
SB model. The reduction of the PDE model to the ODE
model enables us to obtain some analytical results for sta-
tionary lasing states. In the numerical simulation of the MSB
model presented below, we include five modes near the gain
center, labeled byee, oo, eo, ee8, and oe, to construct the
MSB model.

First, we study single-mode lasing. For the MSB model,
one can derive the single-mode stationary solution analyti-
cally. Assuming that only thesth mode has positive gain, and

that the stationary solution has the formEs=Ēse
if , rs

= r̄se
if, andwss=constsĒs,f ,wssPR , r̄PCd, we obtain

I = Ēs
2 =

g̃im

4k̃Jssssatot

sW` − W`
s0dd, s11d

d

dt
f = −

atotD0 + g̃'Ds

atot + g̃'

, s12d

whereatot=aL+as is the total loss rate andW`
s0d is the lasing

threshold given by

W`
s0d =

atotg̃'

k̃m
H1 +S D0 − Ds

atot + g̃'

D2J . s13d

Note that the linear dependence of the light intensity on the
pumping strength is reproduced by the MSB model.

A quantitative comparison of the two models is given in
Table II. Compared to the good agreement of the lasing

threshold, the difference of the slopedI /dẀ is noticeable.
This might be caused by overestimating the value of the
coupling coefficientJssssbecause of the following reason. In
calculating the value ofJssss from Eq. s10d, we supposed a
stadium withR=49/4Î2. However, as can be seen from Fig.
5, an eigenfunction of the open cavity is extended compared
to that of the closed cavity. SinceJklmn scales asR−2, the use
of a smallerR value yields a largerJklmn value. Although the
extension of the eigenfunction is nonuniform, the average
extension rate is roughly estimated as 1.1. This corrects the
value ofdI /dẀ for the MSB model to be 46.2.

Next, we consider the cases where theW` value is large
enough for multimode lasing. In Fig. 6, theW` dependences
of the total light intensityokEk

2 and its mode componentsEk
2

are plotted. We can see that the modeseeandoo constitute
the main components forW`&0.01. For these two modes,
we plot the W` dependence of the frequencies in Fig. 7,
where we can see that the frequency-locking phenomenon is
reproduced. The frequency-locking threshold is estimated to
beW`<0.0064, which is 18% smaller than the threshold for
the SB model. Although there is such a quantitative differ-
ence, it is remarkable that, in the frequency-locking regime,
almost all the energy is shared by the modeseeandoo, while
the other modes are located deep inside the positive gain
region. This is consistent with the SB model’s results, pro-
viding evidence that the mode-interaction effect of the SB
model is properly inherited by the MSB model. However, for
much largerW` valuessW`*0.01d, modes other thaneeand
oo start to lase, which is qualitatively different from the SB
model’s results. Since the mode is basically defined for a
linear system, the breakup of the mode-based description ap-
pears to be unavoidable for too large nonlinearity.

TABLE II. Comparison of the SB and MSB models with regard
to single-mode lasing.

Lasing threshold dI /dẀ

SB model 0.00455 45.8

MSB model 0.00444 38.2

FIG. 6. Light intensitiesI and Ek
2sk=1,… ,5d vs the pumping

strengthW` for the MSB model.

SHINOHARA et al. PHYSICAL REVIEW E 71, 036203s2005d

036203-4



Finally, we focus on the frequency-locking phenomenon
of the MSB model. In the frequency-locking regime, the dy-
namics can be approximately described by the two modesee
and oo. Labeling the modesee and oo by k=1 and k=2,
respectively, we assume the frequency-locked station-

ary solutions as follows:Ek=Ēke
ifk, rk= r̄ke

ifk, wkl=const

sĒk,fk,wklPR , r̄kPC ;k, l =1, 2d, where df1/dt=df2/dt=
−n. Substituting these into Eqs.s6d–s8d, one obtains a set of
equations that determines theW` range where the frequency-
locked solution exists. Since the equations are too compli-
cated to be analytically solved for a general case, we con-
sider here an idealized case to which we can derive the
locking threshold exactly. Namely, we consider a case where
the two complex eigenvalues are symmetrically placed with
respect to the gain center line, i.e.,a1=a2=ā and d1=d2

=d with dk= uDk−D0u. Besides, we assumeJ1111=J2222= J̄.
After this approximation, we can derive the locking thresh-
old as follows:

W`
s1d =

atotg̃'

k̃m
H1 +

cosd

sin2d
sb cosd + Îb2 − 1dJ , s14d

where atot=aL+ā , d=arctansatot/dd and b= J̄/J1122+2. In
the case ofatot@d, this reduces to

W`
s1d <

atotg̃'

k̃m
S1 +

d

atot

Îb2 − 1D . s15d

In Fig. 8, we plot the dependence ofW`
s1d on the parameters

atot andg̃', while the other parameters are fixed at the values
given in Sec. II, and we putā=sa1+a2d /2. In Fig. 8, theo-
retical curves given by Eq.s14d are also plotted. For these
theoretical curves, we supposedd=sd1+d2d /2<0.003 55
andb= 1

2sJ1111+J2222d /J1122+2<4.96, where the mode cou-
pling coefficients are calculated from Eq.s10d as J1111
=0.004 72,J2222=0.004 84, andJ1122=0.001 61. It turns out
that, in spite of the crude approximation, the theoretical es-
timate well explains the numerical data. Since the determi-
nation of the threshold for the SB model requires an enor-
mous amount of numerical computation, the theoretical

estimation is useful for knowing the qualitative nature of the
frequency-locking phenomenon.

IV. SUMMARY

By constructing a mode expansion version of the SB
model, we studied the properties of stationary lasing states
when two modes are selectively excited. The validity of the
mode expansion description was examined by comparing the
results of the MSB model with those of the SB model. It was
demonstrated that qualitative features of the SB model simu-
lation could be reproduced by the MSB model, provided that
the nonlinearity is not too strong to invalidate the description
based on the linear modes. The introduction of the MSB
model enabled us to analytically study the stationary states to
some extent. In particular, we were able to obtain an analyti-
cal expression for the frequency-locking threshold.

ACKNOWLEDGMENT

The work at ATR was supported in part by the National
Institute of Information and Communications Technology of
Japan.

FIG. 7. The dependence of mode frequencies on the pumping
strengthW` for the MSB model.

FIG. 8. The parameter dependence of the frequency-locking
thresholdW`

s1d for the MSB model. The dotted curves are theoretical
ones given by Eq.s14d.
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